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An electromagnetic gyrokinetic formulation is utilized to calculate the turbulent radial flux of
parallel momentum for a strongly magnetized plasma in the large aspect ratio limit. For low-!
plasmas, excluding regions of steep density gradients, the level of momentum transport induced by
microturbulence is found to be well described within the electrostatic approximation. However, near
regions of steep equilibrium profile gradients, strong electromagnetic contributions to the
momentum flux are predicted. In particular, for sufficiently steep density gradient, the magnitude of
transport induced by the off-diagonal residual stress component of the momentum flux induced by
drift wave turbulence can be quenched. This quenching mechanism, which results from shielding of
the parallel electric field by the inductive term, is distinct from E"B shear decorrelation, since it
allows for the level of off-diagonal turbulent transport to be strongly reduced without extinguishing
the underlying microturbulence. In contrast, the level of transport induced by a given Alfvénic
branch of the drift-Alfvén dispersion relationship typically increases as the density gradient
steepens, allowing an alternate channel for momentum transport. A calculation of the momentum
transport induced by Alfvénic turbulence in a homogeneous medium suggests that an imbalance in
Elsasser populations is required in order to introduce a finite level of off-diagonal momentum
transport for the case of the simplified geometry considered. © 2009 American Institute of Physics.
#DOI: 10.1063/1.3039918$

I. INTRODUCTION

The observation of significant rotation in the absence of
external momentum sources, often referred to as “spontane-
ous rotation,” has proven a welcome surprise to the magnetic
fusion program.1 A compilation from a broad database of
H-mode plasmas, has shown that this “spontaneous” or “in-
trinsic” rate of rotation is proportional to the stored plasma
energy divided by the plasma current. Extrapolation to ITER
relevant parameters, based on the ITPA database alluded to
above, suggests that this intrinsic rate of rotation is likely to
be sufficient to suppress resistive wall modes for ITER
plasmas.2 While this optimistic prediction is encouraging, a
more detailed understanding of the underlying physical pro-
cesses is clearly desirable. Specifically, multiple theoretical
studies have suggested that strong off-diagonal components
to the momentum flux may be induced by small scale micro-
turbulence. These off-diagonal transport terms can be sepa-
rated into contributions which are independent of both the
toroidal flow velocity and its gradient, which we will refer to
as residual stress terms, and convective contributions which
are proportional to the toroidal flow velocity. The latter of
these two off-diagonal contributions arises either due to the
breaking of translational invariance along magnetic field
lines, or convective transport of mean parallel momentum by
particle fluxes. The first of these two mechanisms is closely
associated with the equilibrium magnetic field topology,3–5

whereas the second depends sensitively on the electron re-
sponse. Terms of this form have been shown to play a key
role in describing rotation profile peaking,6 or conversely, the
formation of hollow rotation profiles.

The residual stress on the other hand, which corresponds

to the portion of the momentum flux which is independent of
both the toroidal flow velocity and its gradient, provides a
natural candidate for driving intrinsic rotation. This can eas-
ily be seen by considering the structure of the momentum
flux in a simplified geometry, i.e.,
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where Ŝext is the integrated external momentum source.
Hence, while clearly physically distinct, the residual stress
has a mathematical form which is isomorphic to the inte-
grated momentum source. Thus, the residual stress corre-
sponds to an ideal candidate for understanding offsets in the
toroidal rotation velocity. This is in contrast to the convective
or “pinch” term, whose magnitude is dependent on the local
rotation velocity, and thus has a fundamentally distinct effect
on rotation profiles. Specifically, systems whose only nondif-
fusive contribution to the momentum flux is convective, do
not admit stationary solutions with a finite rate of rotation
without the presence of either an external momentum source,
or a nonzero edge boundary condition.

Aside from having a mathematically distinct form in
comparison to convective terms, the residual stress has a
manifestly different physical origin. Residual stress terms are
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often predicted to arise due to k, symmetry breaking induced
by the presence of radial electric field shear.7,8 While this
mechanism does not appear to be a unique means of intro-
ducing a nonvanishing residual stress term !see Refs. 9 and
10 for alternate mechanisms", it is likely to be the most ro-
bust mechanism in H-mode plasmas, especially near the
plasma edge. This follows since while this portion of the
residual stress is being enhanced by radial electric field
shear, the remaining terms in the momentum flux are reduced
due to E"B shear decorrelation.11,12 Thus, the radial electric
field shear driven portion of the residual stress is likely to
play a conspicuous role in barrier regions.7,13 This property is
particularly suggestive, since the “rice scaling” inferred from
the ITPA database is only valid in H-mode plasmas, where
strong radial electric field shear is present near the plasma
edge. Taken together, these two observations suggest that the
structure of the plasma edge, along with the radial electric
field shear driven portion of the residual stress are likely to
be key components in the description of intrinsic rotation.13

The link between radial electric field shear and intrinsic
rotation has been further strengthened by perturbation ex-
periments carried out on JT-60U.14 In these experiments, for
plasmas with weak pressure gradients, the calculated value
of rotation based on a transient momentum transport analy-
sis, in which a diffusive and convective component of the
momentum flux are computed, are in good agreement with
the measured rotation profile. However, as the pressure gra-
dient is steepened in the core, a large offset in the rate of
rotation is observed. This offset in rotation correlates well
with the region of strong pressure gradient, and hence, from
radial force balance, the region of strong radial electric field
shear, thus providing an additional link between rotation off-
sets and strong radial electric field shear.

While existing theoretical models of parallel momentum
transport suggest that robust rates of intrinsic rotation and
radial electric field shear are closely linked, turbulence mod-
els analyzed up to this point have been purely electrostatic.
The electrostatic approximation is particularly conspicuous
in this context, since regions in which off-diagonal residual
stress components of the momentum flux are expected to be
most active coincide with regions of strong mean profile gra-
dients, where the turbulence is likely to possess a significant
electromagnetic component.15 In particular, the relevant pa-
rameter describing the lowest order correction due to finite-!
effects for drift wave turbulence can be easily shown to be
!!qR /Ln"2, where !-cs

2 /vA
2 , q is the safety factor, R is the

major radius, and Ln is the density scale length. Thus, for
regions of steep equilibrium profiles, the transport induced
by drift waves is likely to be strongly modified by electro-
magnetic contributions. Also, we note that Ref. 2 has identi-
fied MA-v# /vA and !N-!TaBT / Ip as appropriate dimen-
sionless quantities for describing the rate of intrinsic rotation
!here !T is the plasma pressure divided by the magnetic pres-
sure induced by the toroidal field BT, a is the minor radius,
and Ip is the plasma current". While accurate comparisons
between theory and experiment require comprehensive trans-
port models, making any confident speculation as to the ori-
gin of this scaling trend premature at this point, the presence
of magnetohydrodynamic !MHD" time scales in the scaling

of toroidal rotation provides an experimental impetus for the
generalization of momentum transport formulations to the
electromagnetic regime.

Aside from modifying the momentum transport induced
by drift wave microturbulence, the generalization to an elec-
tromagnetic gyrokinetic framework allows for the inclusion
of additional avenues of transport with a distinctly different
character in comparison to the already exhaustively analyzed
electrostatic limit of drift wave turbulence. In particular, ki-
netic Alfvén waves !KSAWs", which to lowest order propa-
gate along magnetic field lines, provide an alternate channel,
which is particularly well suited to the transport of parallel
momentum. These modes may be driven directly by ener-
getic particles, but are most likely destabilized via mode con-
version of toroidal Alfvén modes !TAE" near rational
surfaces.16,17 Unlike ideal Alfvén waves, KSAWs possess
both a finite radial group velocity, such that they are capable
of propagating across magnetic field lines, as well as a finite
component of parallel electric field. The latter property is
shown below to play a critical role in determining the
strength of the momentum flux. Similarly, the presence of
electromagnetic turbulence introduces tantalizing new
wrinkles into the momentum budget in comparison to the
electrostatic case. Most notably, momentum may be depos-
ited into the electromagnetic field, thus allowing for an ad-
ditional degree of freedom when describing the evolution of
parallel momentum.

In this paper, we compute the turbulent transport of par-
allel momentum induced by a subset of modes present within
the gyrokinetic framework. Our emphasis throughout this
analysis is on describing the character of off-diagonal trans-
port in regions of steep pressure gradients, with a particular
focus on the residual stress term. Specifically, as alluded to
above, even for modes which are often well described in the
electrostatic approximation, the steepening of the equilib-
rium pressure gradient in the vicinity of a transport barrier
can introduce a robust electromagnetic component to the un-
derlying microturbulence. A quasilinear calculation within a
simplified geometry demonstrates that the resonant compo-
nent of the momentum flux is proportional to the magnitude
of the fluctuating parallel electric field. Thus, for modes
which are to lowest order electrostatic, the addition of an
inductive component to the parallel electric field provides a
robust means of altering the level of momentum transport
induced by these modes for a given spectrum .%#k,&.2 assum-
ing a linear relation between %#k,& and %A,k,&. Similarly, for
modes which are fundamentally MHD in nature, this finite
%E, requirement, limits the range of modes capable of con-
tributing to the resonant component of the momentum flux to
those which possess a nonzero value of %E,, such as,
KSAWs. While the finite %E, restriction is formally relaxed
for the nonresonant component of the momentum flux, a
quasilinear derivation demonstrates that the nonresonant mo-
mentum flux has a qualitatively similar structure, although
different in detail.

The remainder of this paper is organized as follows: In
Sec. II, a covariant formulation for the gyrokinetic Poisson–
Ampere system is developed. Section III presents a system-
atic derivation of the parallel momentum theorem for elec-
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tromagnetic gyrokinetic modes. In Sec. IV, the general
structure of the radial flux of parallel momentum is derived.
Section V introduces a simple reduced model for drift-
Alfvén turbulence in the fluid limit. Simple asymptotic forms
for the momentum flux are then derived, with more general
parameter regimes treated numerically. Finally, in Sec. VI we
conclude.

II. GYROKINETIC POISSON–AMPERE SYSTEM

Before proceeding further it is useful to consider some
technical elements of the gyrokinetic formulation of parallel
momentum transport. The radial flux of parallel momentum
!considering only electrostatic fluctuations for simplicity" is
given by mi%%!nv,"%vx&, where x is a radial variable. To low-
est order, this flux can be written in the form,
mi%%!nv,"%vx&/min0%%v,%vx&+mi%v,&%%n%vx&. Thus, one can
see that turbulence may transport parallel momentum either
via parallel Reynolds stresses, or through particle fluxes. In
this paper we will focus primarily on the former of these two
transport mechanisms, and leave the subtle issue of particle
transport contributions to the momentum flux to a future pa-
per. Disentangling these two transport mechanisms, is how-
ever, nontrivial since they are conflated within the gyroki-
netic formulation of parallel momentum. One potential
means of extricating the former of these mechanisms is to
consider the evolution of parallel velocity rather than mo-
mentum. This approach is not ideal, since parallel velocity is
not a conserved quantity, and thus a source term would be
introduced. A much simpler approach is to boost to a frame
where the plasma is locally at rest. In this way, particle fluxes
will transport negligible amounts of momentum.

In order to apply this procedure, it is necessary to intro-
duce a well defined set of parallel transformations which
leave the gyrokinetic Poisson–Ampere system invariant. In
the laboratory frame, for a system with a mean velocity
given by %v,&, the gyrokinetic Poisson–Ampere system can
be approximated as !see Appendix A"

k!
2 %#k,& = 4'0

s
qs+ d3v̄1J0!("%Fk,&

!s"

+ #J0
2!(" − 1$

qs

Ts
%F!s"&(%#k,& −

%v,&
c

%A,k,&)2 , !1a"

k!
2 %A,k,& =

4'
c 0

s
qs+ d3v̄v,1J0!("%Fk,&

!s"

+ #J0
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qs

Ts
%F!s"&(%#k,& −
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c

%A,k,&)2 , !1b"

where %F!s"& is given by a shifted Maxwellian, (-k!)!,
3d3v̄-2'3d*dv,B, and *-!1 /2"v!

2 /B. Equations !1a" and
!1b" can be written in a more suggestive form by multiplying
Eq. !1a" by %v,& /c, then subtracting the result from Eq. !1b",
yielding

k!
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%v,&
c
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=

4'
c 0

s
qs+ d3v̄!v, − %v,&"J0!("%Fk,&

!s" . !2"

If we introduce the definitions %)k,&-0sqs3dv̄J0!("%Fk,&
!s"

and %jk,&-0sqs3dv̄v,J0!("%Fk,&
!s" , Eq. !2" can be rewritten as
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%#k,&) = 4'(%jk,&

c
−
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Following a similar procedure, Poisson’s equation #Eq. !1a"$
can be rewritten to linear order in %v,& /c, as

+!!k"k!
2 (%#k,& −

%v,&
c

%A,k,&) = 4'(%)k,& −
%v,&

c
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c
) , !4"

where +!!k"-1+0s!kDs
2 /k!

2 "#1− I0!bs"exp!−bs"$ and kDs
-4'nsqs

2 /Ts. Equations !3" and !4" can be seen to have a
particularly appealing form by defining the two vectors

,- - (%#k,&

%A,k,&
), j- - (c%)k,&

%jk,&
) ,

which may be transformed into covariant vectors in the usual
way, i.e.,

,- = g-!,
!,

where

g-! - (− 1 0

0 1
) .

To first order in %v,& /c, the transformation of the two vectors
may be written as

x̄0 = x0 −
%v,&

c
x1, x̄1 = x1 −

%v,&
c

x0,

hence Eqs. !3" and !4" can be rewritten in the plasma frame
as

k!
2 %Ā,k,& = 4'

% j̄k,&

c
, !5a"

+!!k"k!
2 %#̄k,& = 4'%)̄k,&. !5b"

Thus, an explicitly covariant form of the gyrokinetic
Poisson–Ampere system may be introduced !see Ref. 18 for
the p, counterpart"

M!
-,! =

4'
c

j-, !6"

where

M!
- - '+!!k"k!

2 0

0 k!
2 * .

Note that in the drift kinetic limit where +!!k"→1, Eqs. !3"
and !4" can be seen to decouple into k!

2 %#k,&=4'%)k,& and
k!

2 %A,k, &= !4' /c"%jk,&. Similarly, in the electrostatic
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gyrokinetic limit, Eqs. !3" and !4" reduce to +!!k"k!
2 %#k,&

=4'%)k,&. Thus, while a covariant formulation is still well
defined for these two cases, it is clearly not necessary. How-
ever, for the regime in which we will be interested in #elec-
tromagnetic with b=k!

2 )i
2.1, such that +!!k"/1$, in order

to maintain a set of equations invariant under parallel trans-
lations, a covariant formulation is required.

III. MOMENTUM THEOREM

Throughout this analysis we will find it useful to utilize
a v, gyrokinetic representation. This formulation is conve-
nient since we are concerned with describing the velocity
profile, which is not necessarily coincident with the profile of
canonical momentum. Considering the electromagnetic gyro-
kinetic equation in the plasma frame !see Refs. 19 and 20 or
Ref. 21 for a p, formulation"

0 =
!Fs

!t
+

!

!x
· !ẊFs" +

!

!v,

!V̇,Fs" , !7a"

where

Ẋ = v,(b̂ +
%%B!&-

B
) +

c

B
b̂ " $%%#&-, !7b"

V̇, =
− qs

msc

!%%A,&-
!t

−
qs

ms
(b̂ +

%%B!&-
B

) · $%%#&-. !7c"

Here, the subscript s represents the species of particle,
%¯&--!2'"−130

2'd-!¯", and for simplicity we consider cy-
lindrical geometry. Also, note that %A! contributions have
been neglected, and thus our description will be incapable of
describing the parallel compression of the magnetic field.
This effect may be easily incorporated, but would substan-
tially increase the algebraic complexity of the derivation.

In order to derive a general expression for the evolution
of parallel momentum it is useful to separate the temporal
and perpendicular spatial scales into a set of “fast” variables
associated with the rapidly varying microturbulence, which
we will denote by !x! , t", and a set of “slow” variables de-
noted by !X! ,T", where these two sets of variables should be
regarded as independent.22 This separation allows for per-
pendicular space and time derivatives to be decomposed as

$! → $!
!0" + 0$!

!1",
!

!t
→ 0

!

!t
+ 02 !

!T
, !8"

with the parallel derivative ordered as

b̂ · $ 4 0b̂ · $ , !9"

where 04)i /Ln, &k /&ci, k, /k!. Note that since functions of
only the large scales are assumed to be uniform along mag-
netic field lines, there is no need to introduce an analogous
decomposition in the parallel direction. While for the simple
geometry utilized here, an analogous statement can be made
for the poloidal variable as well, it is convenient to introduce
this scale separation such that the expressions derived below
have a greater range of applicability and a more transparent
form. If we now assume the fluctuating fields to be approxi-

mately described by their mixing length levels, we can intro-
duce the ordering,

%# = 0%#!1"!x,t,X!,T" + 02%#!2"!x,t,X!,T" + ¯ ,

%A, = 0%A,
!1"!x,t,X!,T" + 02%A,

!2"!x,t,X!,T" + ¯ ,

Fs = Fs
!0"!X!" + 0%Fs

!1"!x,t,X!,T" + 02%Fs
!2"!x,t,X!,T" + ¯ ,

where for generality we allow magnetic and electrostatic
fluctuations to be of the same order, and for convenience we
will take Fs

!0" to be a !centered" Maxwellian. Furthermore,
we may define an average over the fast space and time scales
such that %%,!x , t ,X! ,T"&=0, but functions of only slow
variables are left unaltered, i.e., %,!X! ,T"&=,!X! ,T". Simi-
larly, averages over the fast scales annihilate derivatives of
fast variables, as well as derivatives along magnetic field
lines since we are assuming statistical homogeneity in the
parallel direction, but commute with slow derivatives, i.e.,
%$!

!0",&= %b̂ ·$,&=0, but %$!
!1",&=$!

!1"%,&.
Here, it is useful to derive properties of the J0!(" opera-

tor, since this operator will appear frequently in the ensuing
analysis. Writing this operator in terms of the fast and slow
variables introduced above, we find

J0!(" / 1 + 1
4)!

2 5#$!
!0"$2 + 20$!

!1" · $!
!0" + 02#$!

!1"$26 + ¯ ,

such that we may define

J0
!0"!(" - 1 + !1/4")!

2 #$!
!0"$2 + ¯ ,

J0
!1"!(" - 1

2)!
2 $!

!1" · $!
!0" + ¯ .

Hence, while J0
!0" commutes with fluctuation quantities inside

averages !i.e., it involves an even number of integrations by
parts and the surface terms vanish", J0

!1" cannot be commuted
without the introduction of surface terms.

A general expression for the evolution of parallel mo-
mentum can be obtained by operating on Eq. !7a" with
0sms3d3v̄v,, and averaging over the fast scales, yielding

7 !P,

!t
8 +7$ · 0

s
ms+ d3v̄Ẋv,Fs8

=70
s

ms+ d3v̄V̇,Fs8 , !10"

where P, -0sms3d3v̄v,Fs. Equation !10" may be simplified
via an expansion in 0. Considering the first term on the LHS
of Eq. !10", this term can be simplified as
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7 !P,

!t
8 =7(0 !

!t
+ 02 !

!T
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s
ms+ d3v̄v,#Fs

!0"!X!" + 0%Fs
!1"!x,t,X!,T" + ¯ $8

/ 03 !

!T70
s

ms+ d3v̄v,%Fs
!1"!x,t,X!,T"8 = 03 !

!T
%%P,

!1"& , !11"

where formally %Fs
!1" vanishes upon averaging, however the momentum theorem derived below will be more transparent with

the inclusion of this term. Similarly, the second term on the LHS of Eq. !10" may be written to lowest order as

7$ · 0
s

ms+ d3v̄v,ẊFs8 / 03 c

B
$!

!1" ·70
s

ms+ d3v̄v,%Fs
!1"#b̂ " $!

!0"J0
!0"!("%#!1"$8

− 03 1
B

$!
!1" ·70

s
ms+ d3v̄v,

2%Fs
!1"#b̂ " $!

!0"J0
!0"!("%A,

!1"$8 , !12"

such that the lowest order surviving term again enters at
O!03". The first term in Eq. !12" can be recognized as de-
scribing momentum transported by E"B convection, and
the second term arises due to magnetic flutter.

Turning now to the RHS of Eq. !10", before explicitly
evaluating this term it is convenient to consider some quali-
tative characteristics of this expression. Considering for sim-
plicity the electrostatic limit, the RHS of Eq. !10" can be
written as

f , = −70
s

qs+ d3v̄%FsJ0!("b̂ · $%#8 . !13"

This expression may be evaluated using the gyrokinetic Pois-
son equation, which may be approximated as

!1 + kDi
2 )i

2"$!
2 %# / − 4'0

s
qs+ d3v̄J0!("%Fs. !14"

The first term in parentheses on the LHS of Eq. !14" appears
due to deviations from quasineutrality, and vanishes in the
limit of negligible Debye length. The second term, however,
is nonvanishing in the limit kDi→1. This violation of gyro-
center quasineutrality results from the polarization drift ap-
pearing as an effective shielding in the gyrokinetic Poisson
equation, rather than in the gyrocenter equations of motion
#i.e., Eq. !7b"$. Thus, while in the drift kinetic limit #i.e.,
!k!)i"2→0$, the RHS of Eq. !10" vanishes identically from
quasineutrality, for the more general limit of !k!)i"2.1, the
RHS of Eq. !10" is in general nonvanishing due to the vio-
lation of gyrocenter quasineutrality. Hence, a comprehensive
description of parallel momentum transport requires evalua-
tion of this term.

To second order, the RHS of Eq. !10" can be written as

f ,
!2" =70

s
ms+ d3v̄V̇,

!2"Fs
!0"8 , !15"

where

V̇,
!2" = −

qs

ms
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1
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!0"!("%A,
!1"$6 . !16"

Substituting Eq. !16" into Eq. !15" yields
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s
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1
c
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!0"J0

!0"!("%A,
!1"$6& = 0,

such that consistent with the LHS, the parallel force vanishes
at second order. The third order parallel force may be written
as

f ,
!3" =70

s
ms+ d3v̄V̇,

!2"%Fs
!1"8

+70
s

ms+ d3v̄V̇,
!3"Fs

!0"8 , !17"

where
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c
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and the gyrokinetic Poisson–Ampere system is given to first
order by
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+!#$!
!0"$2%#!1" = − 4'0
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!1", !19a"
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where +!/kDi
2 )i

2. Considering the second term in Eq. !17"
first, this term can be rewritten after substitution of Eq. !18"
as
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ms+ d3v̄V̇,
!3"Fs
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· %5J0
!0"!("%#!1"#b̂ " $!

!0"J0
!0"!("%A,

!1"$6& . !20"

Turning now to the first term in Eq. !17", Eq. !16" may be
utilized, such that this term can be written in the form,
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The first term in Eq. !21", can be simplified via substitution of the first order Poisson equation !noting that J0
!0" can be

commuted", i.e.,
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Thus, after an integration by parts in time, Eq. !21" can be rewritten as

70
s

ms+ d3v̄V̇,
!2"%Fs

!1"8 = −
+!

4'c
7%A,

!1" !

!t
#$!

!0"$2%#!1"8 +
1
B70

s
qs+ d3v̄%Fs

!1"$!
!0" · 5J0

!0"!("%#!1"#b̂ " $!
!0"J0

!0"!("%A,
!1"$68 .

!22"

The first term in Eq. !22" can again be computed from Pois-
son’s equation. Taking the time derivative of Eq. !19a", mul-
tiplying by %A,

!1", and averaging, yields

+!

4'7%A,
!1" !

!t
#$!

!0"$2%#!1"8
= −7%A,

!1"0
s

qs+ d3v̄J0
!0"!("

!

!t
%Fs

!1"8 . !23"

The gyrokinetic equation to second order can be written as

!

!t
%Fs

!1"

= − v,b̂ · $%Fs
!1"

−
c

B
$!

!1" · 1Fs
!0"b̂ " $!

!0"J0
!0"!("'%#!1" −

v,

c
%A,

!1"*2
−

c

B
$!

!0" · 1%Fs
!1"b̂ " $!

!0"J0
!0"!("'%#!1" −

v,

c
%A,

!1"*2
−

qs

ms
J0

!0"!("%E,
!2"!Fs

!0"

!v,

, !24"

where %E, -−b̂ ·$%#− !1 /c"!%A, /!t. Inserting Eq. !24" into
Eq. !23", using the first order Ampere’s law given by Eq.
!19b", and simplifying, allows Eq. !23" to be written as

+!

4'7%A,
!1" !

!t
#$!

!0"$2%#!1"8
=

c

B7%A,
!1"0

s
qs+ d3v̄J0

!0"!("$!
!1"

· 5Fs
!0"#b̂ " $!

!0"J0
!0"!("%#!1"$68

+
c

B7%A,
!1"0

s
qs+ d3v̄J0

!0"!("$!
!0"

· 5%Fs
!1"#b̂ " $!

!0"J0
!0"!("%#!1"$68 . !25"

Substitution of Eq. !25" into Eq. !22", and integrating by
parts, allows Eq. !22" to be simplified,
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70
s

ms+ d3v̄V̇,
!2"%Fs

!1"8
= −

1
B7%A,

!1"0
s

qs+ d3v̄J0
!0"!("$!

!1"

· 5Fs
!0"#b̂ " $!

!0"J0
!0"!("%#!1"$68 . !26"

After summing Eq. !26" with Eq. !20", the parallel force f ,
!3"

can be written as

f ,
!3" = −

1
B

$!
!1" ·70

s
qs+ d3v̄Fs

!0"J0
!0"!("%A,

!1"

"#b̂ " $!
!0"J0

!0"!("%#!1"$8 . !27"

Thus, to lowest nontrivial order, the evolution of parallel
momentum can be described by

!%%P,&
!T

+ $!
!1" · 2,

!2" = f ,
!3", !28"

where $!
!1" ·2,

!2" is defined by Eq. !12", and f ,
!3" by Eq. !27".

The RHS of Eq. !28", which vanishes in the drift kinetic
limit, can be shown to be equivalent to the parallel compo-
nent of %vEB"%B!, and is thus the remnant of the )v"B
parallel force !note that b̂ is in the direction of the equilib-
rium magnetic field". This term, while subdominant for drift
wave turbulence in the limit !k!)i"231, will be shown to
play an important role in determining the radial flux of mo-
mentum induced by KSAWs, where lowest order contribu-
tions emerge due to finite Larmor radius corrections.

IV. GENERAL EXPRESSION
FOR THE MOMENTUM FLUX

Here it is useful to derive a general expression for the
radial flux of parallel momentum. For simplicity we consider
only the third order momentum theorem given by Eq. !28",
and leave higher order contributions for future analysis. Sub-
stituting the plasma response given by Eq. !B5" into Eq. !28"
yields an expression for the radial component of the momen-
tum flux,

2,
tot = − i

c2

B20
s,k

ms+ d3v̄v,

J0
2!("

&k − k,v,

ky
2( !

!x
−

!%v,&
!x

!

!v,
)

"Fs
!0"9%#k −

v,

c
%A,k92

− i
c

B0
s,k
+ d3v̄v,

J0
2!("

&k − k,v,

"k,ky
!Fs

!0"

!v,
(%#−k −

v,

c
%A,−k)(%#k −

&k

ck,

%A,k)
+

i

B0
s,k

qs+ d3v̄J0
2!("Fs

!0"ky%A,k%#−k. !29"

Before proceeding further, it is useful to comment on the
general form of this expression. First, near wave-particle
resonances where v, /&k /k,, it is easy to see that both the
first and second terms in Eq. !29" are explicitly proportional

to the magnitude squared of the parallel electric field !note
that the third term does not contain a wave-particle reso-
nance". This observation allows us to immediately draw
qualitative conclusions on the transport induced by various
electromagnetic modes. First, for ideal Alfvén modes with a
dispersion relation given by &k

2=vA
2k,

2 and %E, =0, the reso-
nant component of Eq. !29" is seen to vanish identically.
Thus, it is evident that dispersive corrections, which intro-
duce a finite value of %E,, play a crucial role in determining
the level of momentum transport induced by Alfvén waves.
Similarly, for modes which are to lowest order electrostatic,
such as drift wave microturbulence, finite-! corrections can
either increase or reduce the level of parallel momentum
transport carried by resonant particles depending on whether
they enhance or compete with the electrostatic component of
the parallel electric field. As a caveat, we note that the pres-
ence of a drift term within the quasilinear response function
provides a potential means of weakening the link between
resonant particle transport and the parallel electric field, and
will be investigated in a future publication. For the case of
nonresonant particles, while one may anticipate a similar
trend as that discussed above, for the usual case of vthi
3&k /k,, it is likely that finite-! corrections will have a less
prominent effect in comparison to the resonant component.

In order to further simplify Eq. !29", the second term can
be rewritten by adding and subtracting &k to the numerator,
yielding

2,
tot = − i

c2

B20
s,k

ms+ d3v̄v,

J0
2!("

&k − k,v,

ky
2( !

!x
−

!%v,&
!x

!

!v,
)

"Fs
!0"9%#k −

v,

c
%A,k92

− ie
c

B0
s,k
+ d3v̄v,

"
J0

2!("
&k − k,v,

k,ky
!Fs

!0"

!v,
'.%#k.2 + ( &k

ck,
)v,

c
.%A,k.2 − ( &k

ck,
)

"!%#−k%A,k + %#k%A,−k"* − i
1
B0

s,k
qs+ d3v̄J0

2!("kyFs
!0"

"!%#k%A,−k − %A,k%#−k" , !30"

where both the real and imaginary components of the cross
terms of %#k and %A,k can be seen to enter into the expres-
sion for the momentum flux. From Eq. !30" the total momen-
tum flux can be rewritten in terms of the plasma dispersion
function as

2,
tot = 2,

ES + 2,
Re!A#" + 2,

Im!A#" + 2,
AA, !31a"

where

2,
ES = in0mics

20
k

&ci

&k
!ky)s"2 k,

ky
Ẑ!4"50!b"9 e%#k

Te
92

, !31b"

2,
Re!A#" = − 2in0mics

20
k

&ci

&k

k,

ky
!ky)s"2( &k

ck,
)Ẑ!4"50!b"

e2

Te
2

"Re!%A,k%#−k" , !31c"
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2,
Im!A#" = 2n0mics

20
k

&ci

&k

k,

ky
!ky)s"2( &k

ck,
)#1 − 50!b"$

"
e2

Te
2 Im!%A,k%#−k" , !31d"

2,
AA = in0mics

20
k

&ci

&k

k,

ky
!ky)s"2( &k

ck,
)2

50!b"9 e%A,k

Te
92

" 1Ẑ!4" − '1 + 6−1
&e

*

&k
(1 +

3
2
7i −

7i

7c
)

−
ky

k,

1
&ci

!%v,&
!x

* +
1

50!b"'1 −
&e

*

&k

!1 + 7e"*2 ,

!31e"

Ẑ!4" is defined as

Ẑ!4" - − 2421'1 + 6−1
&e

*

&k
(1 −

7i

7c
+ 7i4

2) −
ky

k,

1
&ci

!%v,&
!x

*
"#1 + 4Z!4"$ +

1
2
6−17i

&e
*

&k
2 , !32"

and it is understood that only the real part of the momentum
flux is kept. Here Z!4" is the plasma dispersion function,
4-!1 /:2"!&k /vthik,", 7c

−1-1 /2+b#1− I1!b" / I0!b"$, b
-k!

2 )i
2, 7i-Ln /LTi

, 7e-Ln /LTe
, Ln

−1-−d ln n0 /dx, LTi

−1

-−d ln Ti /dx, LTe

−1-−d ln Te /dx, &e
*-kycs)s /Ln, &i

*

-−6−1&e
*, 6-Te /Ti, cs-:Te /mi, )s-cs /&ci, and &ci

-eB / !mic". The 2,
AA term may be simplified significantly by

noting that only the real piece contributes to the overall mo-
mentum flux. Dropping terms which are manifestly imagi-
nary !i.e., independent of &k=&k

!r"+ i8k", yields the simplified
form,

2,
AA = in0mics

20
k

&ci

&k

k,

ky
!ky)s"2( &k

ck,
)2

50!b"9 e%A,k

Te
92

" (Ẑ!4" − 1'50!b" − 1
50!b" * −

ky

k,

1
&ci

!%v,&
!x

2) . !33"

Here it is useful to point out that unlike the electrostatic case
in which the momentum flux is due solely to ions in the limit
me→0, in the electromagnetic regime, electrons are capable
of impacting the momentum flux, as demonstrated by Eqs.
!31d" and !33" #terms independent of 50!b"$. This can easily
be seen to follow from magnetic flutter terms being weighted
by v, /c, and thus introducing higher order moments of the
electron distribution function in comparison to the electro-
static case. Since vthe=:Te /me, as the order of the moments
of the electron distribution function are increased, contribu-
tions from electrons become increasingly relevant, and as is
verified below, are capable of substantially impacting mo-
mentum transport.

Equations !31a"–!31d" and !33" provide general expres-
sions for describing the radial flux of parallel momentum
induced by small scale microturbulence in the large aspect
ratio limit. In order to write these expressions in a more

transparent form, it is useful to separate contributions due to
resonant particle scattering, and those which may be recov-
ered in the purely fluid limit, i.e., nonresonant transport. In
order to illustrate the origin of these two components more
explicitly, it is useful to consider the general form of the
plasma dispersion function. Symbolically, these contribu-
tions may be written using the notation

Re1i+ dv,

1
&k − k,v, + i+

h!v,"2 , !34"

where h!v," is a general function of v, and i+ is a small
broadening term, approximated below as the growth rate of
the underlying modes. For small +, this integral may be ap-
proximated via separation into its resonant and nonresonant
contributions, i.e.,

Re1i+
v,%&k/k,

dv,

h!v,"
&k − k,v, + i+2 + '+ dv,%!&k − k,v,"h!v," .

!35"

Since the wave-particle resonance has been removed from
the first term in Eq. !35", it may be approximated via the
expansion

Re1i+
v,%&k/k,

dv,

h!v,"
&k − k,v, + i+2

/
+

&k
2 + dv,h!v,"11 + 2( k,v,

&k
) + 3( k,v,

&k
)2

+ ¯ 2 . !36"

Here, the second term in Eq. !35" can be recognized as trans-
port induced by wave-particle resonances, whereas the first
term is clearly fluid in nature. In the following sections we
consider both of these contributions in turn.

A. Nonresonant momentum flux

In order to compute the nonresonant component of the
momentum transport it will be necessary to evaluate the prin-
ciple value component of the plasma dispersion function.
This can most easily be done by expanding the plasma’s
dispersion function in the parameter vthik, /&k. Since we are
primarily interested in drift waves near steep equilibrium
pressure gradients, it is appropriate to consider the limit
vthik, /&k31. Expanding out the nonresonant component of
Ẑ!4" in the above limit, yields

Ẑ!4" / 1 + 6−1
&e

*

&k
(1 +

3
2
7i −

7i

7c
) −

ky

k,

1
&ci

!%v,&
!x

+ O(vthik,

&k
)2

.

!37"

Utilizing this expression, the electrostatic component of the
momentum flux given by Eq. !31b" can be expressed as
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2,
ES = in0mics

20
k

&ci

&k
!ky)s"2 k,

ky
50!b"9 e%#k

Te
92

"'1 + 6−1
&e

*

&k
(1 +

3
2
7i −

7i

7c
) −

ky

k,

1
&ci

!%v,&
!x

+ O(vthik,

&k
)2* , !38"

in agreement with Ref. 7. Considering the form of Eq. !38",
it is apparent that both a residual stress term as well as a
diffusive term are present. As is evident from the form of Eq.
!38", and noted by numerous authors previously,7,8,23–25 the
electrostatic residual stress is odd in k,, and hence sums to
zero identically in the absence of k, symmetry breaking.

The lowest order finite-! contribution to the momentum
flux is given by 2,

Re!A#", and can be approximated as

2,
Re!A#" = − 2in0mics

20
k

&ci

&k

k,

ky
!ky)s"2( &k

ck,
)50!b"

e2

Te
2

"Re!%A,k%#−k"'1 + 6−1
&e

*

&k
(1 +

3
2
7i −

7i

7c
)

−
ky

k,

1
&ci

!%v,&
!x

+ O(vthik,

&k
)2* . !39"

In order to express this term in a more transparent form it
will be convenient to utilize the quasilinear relation between
%A,k and %#k, i.e.,

%A,k = − 9 $k,&
A#

1 + $k,&
AA 9

&=&k

%#k = −
$k

A#

1 + $k
AA%#k, !40"

such that the transport coefficients may be written in terms of
a single scalar field. Dropping terms from Eq. !39" which are
pure imaginary, and assuming the turbulence is near margin-
ality such that .&k./ .8k., yields an expression for the lowest
order finite-! correction

2,
Re!A#" = 2in0mics

20
k

&ci

&k

k,

ky
!ky)s"2( &k

ck,
)

"
Re $k

A#

1 + Re $k
AA50!b"9 e%#k

Te
92

"'6−1
&e

*

&k
(1 +

3
2
7i −

7i

7c
) + O(vthik,

&k
)2* . !41"

Considering now 2,
Im!A#", while this term enters at the same

order in ! as 2,
Re!A#" #Eq. !31d"$, it is easy to see that it

vanishes in the absence of finite Larmor radius corrections,
and will thus typically be small in comparison to 2,

Re!A#". An
important exception corresponds to the case of Alfvén waves
!discussed below", where it is easy to see that the lowest
order surviving contributions to the residual stress compo-
nent of the momentum flux emerge due to finite Larmor ra-
dius corrections. Rewriting Eq. !31d" in terms of %#k, yields
the expression

2,
Im!A#" = 2n0mics

20
k

&ci

&k

k,

ky
!ky)s"2 #1 − 50!b"$

!1 + Re $k
AA"29 e%#k

Te
92

" '( &k

ck,
)Im $k

A# +
8k

&k
!Re $k

AA"2* , !42"

where the imaginary components of the susceptibility matrix
are defined in Appendix B. The remaining term given by 2,

AA

can be written as

2,
AA = in0mics

20
k

&ci

&k

k,

ky
!ky)s"2( &k

ck,
)2 !Re $k

A#"2

!1 + Re $k
AA"250!b"

"9 e%#k

Te
92'1 + O(vthik,

&k
)2*

+ in0mics
20

k

&ci

&k

k,

ky
!ky)s"2#1 − 50!b"$

"( &k

ck,
)2 !Re $k

A#"2

!1 + Re $k
AA"29 e%#k

Te
92

, !43"

which may be simplified to

2,
AA = in0mics

20
k

&ci

&k

k,

ky
!ky)s"2( &k

ck,
)2 !Re $k

A#"2

!1 + Re $k
AA"29 e%#k

Te
92

,

!44"

such that the lowest order surviving piece of this term can be
seen to result from the transport of electron momentum via
magnetic flutter. While this term enters at higher order in
#&k / !ck,"$Re $k

A# in comparison to Eqs. !41" and !42", it will
be seen to play an important role in determining the structure
of the residual stress term. After summation of Eqs. !38",
!41", !42", and !44", the fluid component of the momentum
flux may be approximated as

2, = − $#
!%v,&
!x

+ S , !45"

where

$# = n0mics
20

k

.8k.
&k

2 !ky)s"250!b"9 e%#k

Te
92

, !46"

S = 0
k

Sk'A!!̂" + 2B!!̂"6−1
&e

*

&k
(1 +

3
2
7i −

7i

7c
)* ,

!47"

Sk - n0mics
2 .8k.&ci

&k
2

k,

ky
!ky)s"250!b"9 e%#k

Te
92

,

A!!̂" - 1 −
1

50!b"
1

!1 + Re $k
AA"21!Re $k

AA"2

− 2#1 − 50!b"$' 1

k!
2 )s

2 !̂( &̂k

k̂,

)2

+ !Re $k
AA"2*2 ,

!48"
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B!!̂" -
1

1 + Re $k
AA , !49"

Re $k
AA / −

1

k!
2 )s

2 !̂( &̂k

k̂,

)2(1 −
&̂e

*

&̂k
) . !50"

Here Re $k
AA has been rewritten in the dimensionless vari-

ables given by !̂-!!qR /Ln"2, k̂, -qRk,, &̂e
*-Ln&e

* /cs, &̂pi
*

-−6−1&̂e
*!1+7i", &̂k-Ln&k /cs, we have used the expression

#&k
!r" /ck,$Re $k

A#=−Re $k
AA, and taken the real piece such that

&k is now defined as &k=&k
!r".

Before performing a more detailed analysis of Eq. !45",
it is useful to briefly consider some qualitative characteristics
of this expression. As can be seen from Eq. !46", the diffu-
sive term remains unaffected by finite-!̂ effects to within the
order kept !i.e., we have only kept terms proportional to !̂
and dropped ! corrections". Also, as with the electrostatic
case, the electromagnetic residual stress term requires sym-
metry breaking in k, in order to prevent Eq. !47" from van-
ishing after summation. More interestingly, unlike the diffu-
sive term, the residual stress term given by Eq. !47" can
potentially be significantly modified by finite-!̂ effects
through the coefficients A!!̂" and B!!̂". While the functional
form of A!!̂" is strongly model dependent, such that we will
postpone analysis of this term, some immediate observations
can be made about the behavior of B!!̂". First, the functional
form of B!!̂" can be seen to depend sensitively on the sign of
Re $k

AA. For drift wave turbulence, if we assume &k
/&e

* / !1+k!
2 )s

2" for the purposes of obtaining the sign, and
order of magnitude of Re $k

AA !a more detailed analysis is
presented below", we obtain the expression Re $k

AA

/ !̂!&̂k / k̂,"290. Thus, B!!̂" is a decreasing function of !̂,
which results in the magnitude of the second term in curly
braces in Eq. !47" being significantly reduced for high !̂.
Turning now to ITG turbulence, if we assume 09&̂k:&̂pi

* ,
then Re $k

AA is bounded by

Re $k
AA ; −

1

k!
2 )s

2 !̂( &̂k

k̂,

)2(1 + 6 + 7i

1 + 7i
) . !51"

Thus, Re $k
AA30 and B!!̂" is an increasing function of !̂.

Hence the magnitude of this term may be anticipated to be
enhanced for ITG turbulence. This trend, is however, only
valid for regimes in which .Re $k

AA.31, since for the form of
B!!̂" given by Eq. !49", B!!̂" has a singularity as Re $k

AA

→−1. This singularity may be removed by noting that we
have assumed Re $k

AA/ Im $k
AA !i.e., near marginality and

weak wave particle interaction, see Appendix B", such that
we have approximated the real part of the coefficient of Eq.
!40" as −Re $k

A# / !1+Re $k
AA". Relaxing the above assump-

tion, the denominator of the coefficient in Eq. !40" takes the
form !1+Re $k

AA"2+ !Im $k
AA"2, such that B!!̂" becomes a de-

creasing function of !̂, regardless of the sign of Re $k
AA, for

.Re $k
AA.91. Thus, as Re $k

AA approaches 1, the amplitude of
B!!̂", and hence the dominant portion of the residual stress
!since this term is typically larger than the first term for

09&̂k:&̂pi
* ", becomes extremely sensitive to the value of

Im $k
AA, and hence the eddy decorrelation time 6c

−1, here ap-
proximated by the linear growth rate .8k.. From this cursory
analysis it can be concluded that while at least a portion of
the residual stress is potentially significantly reduced due to
finite-!̂ terms for drift wave turbulence, for ITG turbulence,
the residual stress may be modestly enhanced, whose maxi-
mum value depends sensitively on 6c

−1.

B. Resonant component

Considering the resonant component of Eq. !31a", after
evaluation of integrals over velocity space, one is straightfor-
wardly led to the expression,
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where

1
L!

-
1
Ln

− 11
2

+ b'1 −
I1!b"
I0!b"* −

1
2
( &k

k,vthi
)22 1

LTi
.

Equation !52" can be simplified in an analogous manner as
the nonresonant component, however before proceeding fur-
ther, it is useful to discuss a few simple limits for which this
form is particularly convenient. First, for the case of ideal
Alfvén waves #%A,k= !k,c /&k"%#k$, Eq. !52" can be seen to
go to zero identically. This can easily be seen to follow due
to %E, vanishing identically in this limit. This complete can-
cellation, however, can be removed via the introduction of
finite Larmor radius corrections, i.e., for kinetic Alfvén
waves %A,k= !k,c /&k"!1+k!

2 )s
2"%#k, such that the parallel

electric field can be approximated as %E,!k"/ ik,k!
2 )s

2%#k,
and a finite value of momentum flux remains, albeit at a
significantly reduced level.

Equation !52" may be simplified via the use of Eq. !40",
and noting #&k

!r" /k,c$Re $k
A#=−Re $k

AA, such that the resonant
component may be written in the simple form,

2.
tot = 0

k

2,k
ES

!1 + Re $k
AA"2 , !53"

where the electrostatic resonant particle flux is defined by

2,
ES - 0

k
2,k

ES,

and
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2,k
ES =:'

2
n0mics

250!b"
.k,.)i

!ky)s"2( &k

k,vthi
)9 e%#k

Te
92

"exp'−
1
2
( &k

k,vthi
)2*

"' )i

L!

+
k,

ky
( &k

k,vthi
) − ( &k

k,vthi
) 1
&ci

!%v,&
!x

* .

From Eq. !53", one can see that the qualitative result for
resonant particles is similar to that of the nonresonant com-
ponent, except that both the residual stress and diffusive
terms are strongly modified by finite-!̂ corrections, and that
the finite-!̂ modifications have a somewhat more transparent
form. Specifically, the effect of finite-!̂ modifications is to
introduce a coefficient proportional to B!!̂"2, such that the
brief analysis presented within the previous section can be
carried over with little amendment. Namely, for drift wave
turbulence !i.e., 03&k3&e

*" the magnitude of Eq. !53" de-
creases with !̂, but for ITG !09&k:&pi

* ", the magnitude is
an increasing function of !̂, to lowest order in !̂. Note, that
these trends are somewhat strengthened due to the magnitude
of the finite-!̂ coefficient being squared.

V. DRIFT-ALFVÉN WAVES

Expressions for the radial flux of parallel momentum
were derived for general gyrokinetic modes in a simplified
geometry in the previous section. While some qualitative
trends were apparent, here it is useful to explicitly evaluate
these terms for the case of drift-Alfvén turbulence in various
limits. For simplicity, we will treat the fluid limit since this
case is the most transparent. Note that within the homoge-
neous analysis presented below we will be unable to specify
the radial eigenmode structure, and hence unable to accu-
rately evaluate integrals over k,. Thus, our emphasis in the
following sections will be on identifying how finite-!̂ terms
modify electrostatic transport coefficients. Asymptotic forms
for the radial eigenmodes for both the drift wave and Alfvén
wave branches are derived in Appendix C, such that the role
of E"B flow shear as a symmetry breaking mechanism for
each branch of turbulence is made evident.

As discussed in the previous section the impact of
finite-!̂ terms is strongly mode dependent, and often highly
sensitive to the particulars of the model chosen. Here, it is
instructive to consider a simple model for drift-Alfvén
waves, such that explicit forms for the expressions describ-
ing finite-!̂ modifications can be obtained. Since we are pri-
marily interested in regimes for which .vthik, /&k.<1, it will
be useful to truncate the expansion of the plasma dispersion
function at lowest nontrivial order, such that the drift-Alfvén
dispersion relationship may be written as

0 = 1 + 6#1 − 50!b"$ −
&̂e

*

&̂k

50!b"

− !̂( &̂k

k̂,

)21 − 50!b"
k!

2 )s
2 (1 −

&̂e
*

&̂k
)(6 +

&̂e
*

&̂k
)

+ !k!)i"27i

&̂e
*

&̂k

50!b"'1 −
1

k!
2 )s

2 !̂( &̂k

k̂,

)2(1 −
&̂e

*

&̂k
)*

"'1 −
I1!b"
I0!b"* . !54"

From Fig. 1 it is clear that Eq. !54" possesses three roots: two
high frequency roots which we will refer to as Alfvén roots,
as well as one drift root, which is substantially modified by
finite-!̂ coupling. Before proceeding further it is useful to
expand Eq. !54" in the parameter k!

2 )i
231, yielding

0 = k!
2 )s

2(1 −
&̂pi

*

&̂k
) + (1 −

&̂e
*

&̂k
)'1 − !̂( &̂k

k̂,

)2(1 −
&̂pi

*

&̂k
)* ,

!55"

which will provide a useful expression for simplified analytic
estimates provided in the next subsections.

A. Drift wave branch

As discussed above, off-diagonal transport arising from
the drift wave root can be substantially modified by finite-!̂
effects. In order to understand the strength of finite-!̂ modi-
fications to the residual stress term, it is instructive to com-
pute the functional forms of A!!̂" and B!!̂" for the simplified
model given by Eq. !54". Plots of both A!!̂" and B!!̂" are
shown in Fig. 2. As can clearly be observed, both A!!̂" and
B!!̂" are decreasing functions of !̂, with A!!̂" decreasing
somewhat more slowly. This strong !̂ dependence suggests
that during barrier formation, the level of parallel momentum
transport induced by drift wave turbulence may be signifi-
cantly reduced, thus providing an alternate means of quench-
ing off-diagonal momentum transport aside from E"B shear
decorrelation.11

FIG. 1. Plot of roots from the drift-Alfvén dispersion relation for the pa-
rameters: 6=2, 7i=2, k!)s=0.3, &̂

e
*=0.3 /:2, k̂, =1.0, and !̂=5.0.

012301-11 Transport of parallel momentum… Phys. Plasmas 16, 012301 "2009#



B. Alfvénic branches

Before considering the general form of the momentum
flux induced by Alfvén waves with arbitrary k!

2 )s
2, and plas-

mas with steep equilibrium profiles, it is useful to consider
some simplified limits for which transparent analytic expres-
sions can be derived. For these simplified limits it will be
useful to utilize Eq. !55" in order to approximate Re $k

AA,
yielding

Re $k
AA = !̂!&̂k/k̂,"2!1 − &̂pi

* /&̂k"#1 − !̂!&̂k/k̂,"2!1 − &̂pi
* /&̂k"$−1.

!56"

Considering first the idealized case of !k!
2 )s

2 ,Ln
−1 ,LTi

−1 ,LTe

−1"
→0, the two Alfvén roots reduce to &k

2=k,
2vA

2 . Thus, in this
purely Alfvénic limit !̂!&̂k / k̂,"2→1, which leads to Re $k

AA

→1, and the residual stress term vanishes identically. Next,
considering the limit of finite dispersion, but with vanishing
equilibrium gradients, Eq. !55" can easily be recognized to
reduce to the kinetic shear Alfvén wave dispersion relation-
ship, i.e., &k

2=k,
2vA

2!1+k!
2 )s

2". In this limit !1+Re $k
AA"−1

=−k!
2 )s

2, and after a straightforward calculation, the residual
stress reduces to

S = − 20
k

!k!)s"2(1 −
6−1

2
)Sk. !57"

Here we do not distinguish between the positive and negative
roots, since the transport arising from both branches is iden-
tical. As can be seen from Eq. !57", up to dispersive correc-
tions, the radial wave flux of parallel momentum is
quenched. This result is not surprising since for the simple
magnetic field topology considered, the only means for
Alfvén waves to transport momentum radially is to decouple
from magnetic field lines, which is only possible via the
radial group velocity introduced by dispersive corrections. If
we now consider the limit of finite, but weak equilibrium
gradients #i.e., .&e

* / !k,vA".<1$, to lowest order the KSAW
dispersion relation is given by

&k
= = = k,vA:1 =

&pi
*

k,vA
'1 + k!

2 )s
2(1 =

&e
* − &pi

*

k,vA
)*1/2

,

!58"

such that the residual stress may be written to first order in
&e

* / !k,vA" as

S= = − 20
k

!k!)s"2(1 −
6−1

2
>

&pi
*

k,vA
)Sk

=. !59"

Thus, the presence of finite gradients in the equilibrium pro-
files allow for a splitting of the positive and negative Alfvén
modes, and hence a significant deviation in the functional
form of A!!̂" and B!!̂" for the positive and negative roots.
Since the splitting term is odd in k,, while the first two terms
in Eq. !59" vanish identically after summation in the absence
of k, symmetry breaking, the splitting term is nonvanishing.
Hence, the presence of frequency splitting allows for finite
levels of transport induced by both Sk

+ or Sk
− in the absence of

k, symmetry breaking, with directions typically in opposition
to one another. Therefore, in the presence of equilibrium pro-
file gradients, a sufficient requirement for a nonzero residual
stress is an imbalance in .%#k

+.2 versus .%#k
−.2 !i.e., an imbal-

ance in the Elsasser populations", a different requirement
than k, symmetry breaking.

The functional form of the residual stress for both the &k
+

and &k
− branches of the drift-Alfvén dispersion relation is

shown in Fig. 3, with the drift wave branch also plotted for
reference. Since this plot is generated for a homogeneous
formulation of drift-Alfvén turbulence, the structure of the
radial eigenmodes, and hence k, symmetry breaking, cannot
be modelled comprehensively. The drift wave branch, de-
noted by the solid line in Fig. 3, is identically zero as antici-
pated, however, both the positive and negative Alfvén
branches have finite amplitudes. It is also clear that their
magnitudes are equal and opposite to each other, such that
finite momentum transport is only induced for cases of im-
balances in the underlying Elsasser population. Furthermore,
as !̂ is increased the direction of momentum transport in-
duced by each branch of Alfvén turbulence inverts, and then
strongly diverges. This suggests that for regimes of finite

FIG. 2. Plot of quenching factor for the parameters: 6=1, 7i=2, k!)i=0.3,
&̂

e
*=0.3 /:2, and k̂, =1.0. The solid and broken lines correspond to A!!̂" and

B!!̂", respectively.
FIG. 3. Plot of the residual stress in arbitrary units vs !̂ for the parameters:
6=1, k!)i=0.3, &̂

e
*=0.3 /:2, and 7i=2. The solid line indicates the value of

the residual stress for drift wave turbulence, the broken line corresponds to
&k

+, and the broken dotted line indicates &k
−.
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cross helicity, robust momentum transport can be induced at
high !̂, as well as inversions in the direction of off-diagonal
momentum transport at moderate !̂.

For completeness, we have also plotted the functional
forms of A!!̂" and B!!̂", for both branches of Alfvén turbu-
lence !Fig. 4". As anticipated, both A!!̂" and B!!̂" are strong
functions of !̂, with A!!̂" being particularly sensitive. Fur-
thermore, from Fig. 4 the magnitude of A!!̂" can be seen to
be substantially larger than B!!̂" for high !̂. Thus, while both
A!!̂" and B!!̂" are capable of inducing finite levels of off-
diagonal transport, A!!̂" is generally the dominant compo-
nent. Also, since B!!̂" has a definite sign, A!!̂" can be seen
to be responsible for introducing inversions in the direction
of off-diagonal transport, where we note that the location of
the inversion is highly parameter dependent.

VI. CONCLUSION

In the above analysis we have extended the derivation of
electrostatic parallel momentum transport coefficients to
plasmas with finite !. It is found that while the electrostatic
approximation is valid for low-! plasmas throughout much
of the bulk plasma region, near regions of steep density gra-
dients the electrostatic approximation is found to provide a
poor estimate of the off-diagonal momentum transport. In
particular, the resonant component of parallel momentum
transport, which recent gyrokinetic simulations have shown
to potentially play a key role in determining the toroidal
momentum diffusivity,26 is observed to be proportional to
.%E,.2. This observation has been shown to yield the follow-
ing results:

!1" For the case of drift wave turbulence, where the electro-
static and electromagnetic components of the parallel
electric field oppose one another, the resonant contribu-
tion to the turbulent momentum flux !i.e., both diffusive
and non-diffusive terms" can be quenched for suffi-
ciently large !̂-!!qR /Ln"2.

!2" For ITG turbulence on the other hand, to lowest order in
!̂, %E, is enhanced leading to a potential increase in the
level of transport induced by this branch of turbulence in

regions of steep pressure gradients in comparison to its
electrostatic value at fixed levels of turbulence intensity.

!3" While ideal Alfvén modes have been shown to induce
zero momentum transport, KSAWs are capable of intro-
ducing significant levels of momentum transport.

Qualitatively similar statements, with some amendment as
discussed in detail above !see Table I", can be made for the
nonresonant component of the momentum flux. More spe-
cifically, while the off-diagonal components of the momen-
tum flux are modified in a manner fairly analogous to that for
the resonant component, the diffusive contribution is not im-
pacted by finite-!̂ corrections for the modes considered.

Items !1" and !2" above, and their nonresonant analogs,
can be seen to have a potentially significant impact on mo-
mentum transport in barrier regions, and thus likely on the
rate of core plasma rotation. This follows, since existing the-
oretical models predict the residual stress contribution to the
turbulent momentum flux to play a crucial role in determin-
ing the rate of toroidal rotation in the absence of external
momentum input.13 Furthermore, the residual stress is antici-
pated to be primarily active in regions of steep pressure gra-
dients, such as exist near transport barriers.7 As noted above,
these regions coincide with domains in which finite-!̂ effects
are likely to strongly impact the turbulent momentum flux.
Thus, for drift wave turbulence, the electromagnetic result
indicated by item !1" suggests that an electrostatic calcula-
tion would predict an artificially large value of the residual
stress term for a given spectrum .%#k,&.2 assuming a linear
relation between %#k,& and %A,k,&. Furthermore, in the elec-
trostatic limit, the only presently known means of suppress-
ing the residual stress term is through E"B shear decorre-
lation of the underlying microturbulence. This is in contrast
to the more general electromagnetic limit, where %E, shield-
ing via parallel induction is predicted to provide a novel
means of quenching the residual stress, without extinguish-
ing the underlying microturbulence. In contrast, to lowest
order in !̂, the electrostatic limit has been shown to under-
estimate the magnitude of the residual stress term for ITG
turbulence. We note that these predictions are made assum-
ing equivalent levels of turbulence intensity for the electro-
static and electromagnetic cases.

Kinetic Alfvén waves provide an alternate channel of
momentum transport aside from the already well studied
case of electrostatic microturbulence. In particular, for antici-
pated burning plasmas in the next generation of confinement

FIG. 4. Plot of positive Alfvén root demonstrating change of sign of A!!̂"
for high !̂, with the parameters: 6=1, k!)i=0.3, &̂

e
*=0.3 /:2, 7i=2, and

k̂, =1.0. The solid line corresponds to A!!̂" and the broken line to B!!̂".

TABLE I. Summary of scaling trends of diffusive and nondiffusive terms
with increasing !̂.

Resonant particles Nonresonant particles

Diffusive flux: See Eq. !53" See Eq. !46"
Electron DWs Reduced Unaffected by !̂ corrections

ITG Enhanced Unaffected by !̂ corrections

Nondiffusive flux: See Eq. !53" See Eqs. !47"–!50"
Electron DWs Reduced Reduced

ITG Enhanced Typically enhanced
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devices, the presence of a large population of energetic alpha
particles can potentially lead to the destabilization of a broad
spectrum of Alfvén eigenmodes. As discussed above,
KSAWs may be destabilized via mode conversion of Alfvén
eigenmodes such as TAEs near rational surfaces, and are thus
likely to be active in present, and especially, future devices.
Based on the analysis presented above, the character of the
turbulent transport induced by Alfvén modes is likely to have
a distinctly different nature for the cases of balanced and
unbalanced Elsasser populations. In the former case, for the
simple geometry utilized here, only a diffusive component to
the momentum flux would be present. Thus Alfvénic turbu-
lence would have the effect of introducing an additional dif-
fusive contribution to the turbulent momentum flux aside
from that arising from small scale microturbulence. In the
latter scenario of an unbalanced Elsasser population, a re-
sidual stress component to the momentum flux would also be
present, providing an additional means of inducing offsets in
the plasma rotation. While a detailed analysis of mechanisms
for inducing imbalances in the Elsasser population is beyond
the scope of the present work, here we speculate that an
unbalanced energetic particle population would likely pro-
vide such a mechanism. These and other ramifications aris-
ing from the above result will be pursued in a future publi-
cation.
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APPENDIX A: DERIVATION OF GYROKINETIC
POISSON–AMPERE SYSTEM

Here we provide a brief derivation of the approximate
gyrokinetic Poisson–Ampere system used in the above
analysis. The Poisson–Ampere system may be written as20

$!
2 %# = − 4'0

s
qs+ d3v̄%e−)·$TgyF

!s"&-, !A1a"

$!
2 %A, = −

4'
c 0

s
qs+ d3v̄%e−)·$v,TgyF

!s"&-, !A1b"

where the charge density and current density are written in
terms of the gyrocenter distribution function. The pullback
transformation can be shown to be given by

TgyF
!s" = F!s" + #S1,F!s"$ +

qs

c
!%A,gc − %%A,gc&-"

!F!s"

!v,

,

!A2"

where

S1 -
qs

&cs
+-

d-!%,gc − %%,gc&-" ,

%,gc = %#gc −
v,

c
!%A,gc − %%A,gc&-", %?gc = e)·$%? ,

and the gyrokinetic Poisson bracket can be shown to reduce
to

#S1,F!s"$ =
qs

msc

!S1

!-

!%F!s"&
!*

+
b̂

ms
· $S1

!%F!s"&
!v,

−
cb̂

qsB
· #$S1 " $%F!s"&$ . !A3"

Ordering the ratio of the first term in Eq. !A3" versus the
second and third terms, yields respectively,

qs

msc

1
*

ms

k,

vths 4
1

k,)!s"
/ 1,

qs

msc

qsB

c

1
*

L!

ky
4 ' L!

)!s"
*' 1

ky)!s"
* / 1.

Thus Eq. !A2" can be simplified as

TgyF
!s" = F!s" +

qs

msc

!%F!s"&
!*

!S1

!-
+

qs

c
!%A,gc − %%A,gc&-"

!%F!s"&
!v,

.

!A4"

For a Maxwellian this expression may be rewritten as

TgyF
!s" = F!s" +

qs

Ts
!%#gc − %%#gc&-"%F!s"&

+
qs

Ts

v,

c
!%A,gc − %%A,gc&-"%F!s"&

+
qs

c
!%A,gc − %%A,gc&-"

!%F!s"&
!v,

, !A5"

where we note that for a centered Maxwellian the third and
fourth terms in Eq. !A5" cancel. Here, however, since we are
interested in generalized velocity profiles, we consider a
shifted Maxwellian, such that Eq. !A5" reduces to

TgyF
!s" = F!s" +

qs

Ts
!%#gc − %%#gc&-"%F!s"&

+
qs

Ts

%v,&
c

!%A,gc − %%A,gc&-"%F!s"& . !A6"

The presence of the third term in Eq. !A6" will be seen to
play a key role in the structure of gyrokinetic Poisson–
Ampere system. Substituting Eq. !A6" into Eqs. !A1a" and
!A1b" yields the gyrokinetic Poisson–Ampere system,

k!
2 %# = 4'0

s
qs+ d3v̄1J0!("%Fk,&

!s"

+ #J0
2!(" − 1$

qs

Ts
%F!s"&(%#k,& −

%v,&
c

%A,k,&)2 , !A7a"
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k!
2 %A,k,& =

4'
c 0

s
qs+ d3v̄v,1J0!("%Fk,&

!s"

+ #J0
2!(" − 1$

qs

Ts
%F!s"&(%#k,& −

%v,&
c

%A,k,&)2 ,

!A7b"

which completes the derivation.

APPENDIX B: DIELECTRIC OF GYROKINETIC MEDIA

1. Derivation of susceptibility tensor

In order to derive a compact expression for the gyroki-
netic susceptibility tensor, it is useful to utilize the covariant
notation introduced in Sec. II. To first order in the fluctuating
fields, the gyrokinetic equation may be written as

0 = !-#v-F!s"$ +
!

!x!

· #Ẋ!F!s"$ +
!

!v,

#V̇,F!s"$ , !B1"

where

Ẋ! = − J0!("
1
B

!b̂ " $!"v-,-, !B2"

V̇, = − J0!("
qs

ms
!!1,0 − !0,1" =

1
2

J0!("
qs

ms
+-!F-!, !B3"

and

( - k!)!z- - (ct

z
), v- - ż- = ( c

v,
) ,

!- -
!

!z-
=;−

1
c

!

!t

!

!z
<, F-! - ( 0 − E,

E, 0
) ,

E, = − !!1,0 − !0,1" .

From Eq. !B1" the induced plasma response may be written

%Fk,&
!s" = J0!("

c

B
R!k-v-"'ky

v8

c
( !

!x
− %v,&!

!

!v,
)%F!s"&

−
1
2
&cs+-!G8

-!!%F!s"&
!v,

*,8 - T8
!s",8, !B4"

where we have transformed to a frame moving with velocity
%v,&, and introduced the definitions,

k- - (&/c
k,

), G8
-! - k-%8

! − k!%8
-, R!k-v-" -

1
& − k,v,

.

Using the above notation it is now straightforward to calcu-
late the gyrokinetic dielectric. From Eq. !B4" the induced
plasma response may be written in terms of total plasma
perturbation !including both the induced field as well as the
external field" as

%Fk,&
ind = T8

!s"!,tot"8, !B5"

where !,tot"8= !,ind"8+ !,ext"8. The current two vector may
be defined in terms of the gyrokinetic response, i.e.,

!jind"% - 0
s

qs+ d3v̄J0!("v%%Fk,&
ind . !B6"

Substituting Eq. !B5" into Eq. !B6", yields

!jind"% - 0
s

qs+ d3v̄J0!("v%T8
!s"!,tot"8 - R8

%!,tot"8. !B7"

Thus, inserting Eq. !B7" into Eq. !6" allows the induced
response of the fields to an external perturbations to be writ-
ten as

(M8
% −

4'
c

R8
%)!,ind"8 =

4'
c

R8
%!,ext"8. !B8"

Multiplying Eq. !B8" by !M−1"8
@, yields,

'%8@ −
4'
c

!M−1"%
@R8

%*!,ind"8 =
4'
c

!M−1"%
@R8

@!,ext"8. !B9"

The susceptibility tensor may then be defined as

$8
@ - −

4'
c

!M−1"%
@R8

% . !B10"

2. Explicit form of susceptibility tensor

Introducing the simplified notation,

$k,&
## = $0

0, $k,&
#A = $1

0, $k,&
A# = $0

1, $k,&
AA = $1

1, !B11"

the components of the susceptibility matrix may be defined
as

$k,&
## = − 4'0

s

qs

+!!k"k!
2 + d3v̄

J0
2#k!)!

!s"$
& − k,v,

" ' c

B
!b̂ " k" · ( !

!x
−

!%v,&
!x

!

!v,
)%F!s"& −

qs

ms
k,

!%F!s"&
!v,

* ,

!B12a"

$k,&
#A = 4'0

s

qs

+!!k"k!
2 + d3v̄

J0
2#k!)!

!s"$
& − k,v,

"'v,

B
!b̂ " k" · ( !

!x
−

!%v,&
!x

!

!v,
)%F!s"& −

qs

ms

&

c

!%F!s"&
!v,

* ,

!B12b"

$k,&
A# = −

4'
c 0

s

qs

k!
2 + d3v̄v,

J0
2#k!)!

!s"$
& − k,v,

"' c

B
!b̂ " k" · ( !

!x
−

!%v,&
!x

!

!v,
)%F!s"& −

qs

ms
k,

!%F!s"&
!v,

* ,

!B12c"
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$k,&
AA =

4'
c 0

s

qs

k!
2 + d3v̄v,

J0
2#k!)!

!s"$
& − k,v,

"'v,

B
!b̂ " k" · ( !

!x
−

!%v,&
!x

!

!v,
)%F!s"& −

qs

ms

&

c

!%F!s"&
!v,

* .

!B12d"

By adding and subtracting & to the numerators of Eqs.
!B12c" and !B12d", the following expressions may be
derived:

$k,&
AA = +!!k"

&

ck,

$k,&
#A − 0

s

kDs
2

k!
2

vths
2

c2

ky

k,

50#b!s"$
1
&cs

!%v,&
!x

, !B13a"

$k,&
A# = +!!k"

&

ck,

$k,&
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Explicitly, $k,&
#A and $k,&

## can written as
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In order to further simplify Eqs. !B13a", !B13b", !B14a", and
!B14b", it is useful to take the simple limit of me→0 and
.k,vthi /&.31, yielding for the real piece,
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where & is taken as pure real. From Eqs. !B13a" and !B13b",
the real parts of $k,&

AA and $k,&
A# can be written as
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where terms proportional to k!
2 )i

2!vthik, /&"2 have been
dropped. Here it is useful to note the relationship

− ( &

ck,
)Re $k,&

A# = Re $k,&
AA . !B19"

Similarly for the imaginary components, where we only keep
the lowest order contribution in !vthik, /&"2, and neglect reso-
nant particle contributions for simplicity,
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APPENDIX C: LINEAR MODE PROPERTIES

The momentum theorem derived in Sec. III provides a
specific form for calculating the radial flux of parallel mo-
mentum. Here it is convenient to derive the linear mode
properties for general gyrokinetic modes, as well as eigen-
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vectors which connect the scalar potential with the parallel
component of the vector potential such that expressions for
parallel momentum flux can be readily analyzed in terms of
a single field.

1. Homogeneous turbulence

In this subsection we outline the structure of the disper-
sion relationship and eigenvectors for electromagnetic gyro-
kinetic modes. The parallel component of the vector poten-
tial may be related to the scalar potential via Eq. !B9",
yielding

%A,k,& =
− $k,&

A#

1 + $k,&
AA %#k,&, !C1"

where $k,&
A# and $k,&

AA are defined by Eqs. !B13a", !B13b",
!B14a", and !B14b". Similarly, a dispersion relation may be
derived for electromagnetic gyrokinetic modes, yielding

0 = Dk,& = !1 + $k,&
##"!1 + $k,&

AA " − $k,&
#A$k,&

A# . !C2"

From Eq. !C2", the growth rate may be approximated as

8k = 9− Im Dk,&

!Dk,&/!& 9&=&k

, !C3"

where

Im Dk = Im $k,&
## −

$k,&
A#

1 + $k,&
AA Im $k,&

#A . !C4"

2. Sheared slab geometry

The linear eigenmode equations for electromagnetic gy-
rokinetic modes in a sheared slab geometry can be written
utilizing the susceptibility matrix as

− +!!k"k!
2 %#k = +!!k"k!

2 !$k
##%#k + $k

#A%A,k" , !C5a"

− k!
2 %A,k = k!

2 !$k
A#%#k + $k

AA%A,k" , !C5b"

where k!
2 =−!2 /!x2+ky

2, k, =kyx /Ls and the susceptibilities
are defined in Appendix B. These expressions may be sim-
plified in the fluid limit by expanding the plasma dispersion
function for &k / !vthik,"91, yielding the reduced equations
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where we have defined
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&e
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6
) ,

and &̄k-&k−ky%vE!0"&, with an E"B shear profile given by
%vE!x"&= %vE!0"&+ %vE!0"&!x. In the electrostatic limit, Eq.
!C6a" can be seen to reduce to that studied in Ref. 27 with
the addition of E"B flow shear. In this simple limit, this
eigenvalue equation can be shown to possess three roots:
stable and unstable ITG roots, and a marginally stable drift
wave branch. The presence of magnetic fluctuations allows
for two additional roots given by parallel and antiparallel
propagating Alfvén waves. Exact analytic solutions to the
generalized electromagnetic system given by Eqs. !C6a" and
!C6b" are at present unavailable !although see Ref. 28 for
limiting cases" such that we will only be able to determine
approximate asymptotic forms. Introducing eikonal solutions
of the form,29,30

#%#k!x",%A,k!x"$ = #B!x",A!x"$exp'i+x

dxkx!x"* , !C7"

where !B ,A" are assumed to be slow functions of x. After
substitution of Eq. !C7" into Eqs. !C6a" and !C6b", the low-
est order eigenvalue equations have the form,

kx
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where
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Here we have assumed that the E"B and toroidal flow shear
are sufficiently weak such that we may ignore terms of order
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x0
2 /Ls

2, and we have neglected spatial derivatives of B and A.
A trivial solution of Eq. !C8b" can be easily seen to be given
by kx

2=−ky
2. The eigenvector for this solution follows from

Eq. !C8a", and is given by

B = ( &̄k

cky
)Ls

x
(1 − kyx

1

&̄k

!%vE&
!x

)A . !C9"

Neglecting E"B shear, Eq. !C9" can be rewritten as B
= !&̄k /ck,"A, which can be easily recognized as the lowest
order eigenvector for Alfvén waves. Thus, asymptotic solu-
tions with the above eigenvector, and the asymptotic radial
eigenmode given by exp!−.kyx." !where the minus/plus solu-
tion is chosen for positive/negative ky since we require solu-
tions which vanish at =1" can be confidently identified as
describing the two Alfvén roots of Eqs. !C6a" and !C6b".
Two characteristics of this solution are worthy of note: Un-
like electrostatic drift wave microturbulence, the presence of
E"B flow shear does not shift the eigenmode off the reso-
nant surface. Also, while these modes remain centered
around their respective rational surfaces, E"B flow shear
does induce a shift in the eigenvector. Physically, this shift
arises due to the inductive component of the parallel electric
field being Doppler shifted by the E"B flow. For a sheared
E"B flow profile, the Doppler shift will introduce a com-
ponent of the parallel electric field which has odd parity
about the rational surface, and thus can be understood to
provide an effective symmetry breaking mechanism.

The second solution to Eqs. !C8a" and !C8b", which will
describe the asymptotic form of the drift wave and ITG
branches of Eqs. !C6a" and !C6b", can be approximated in
the limit of large x as

kx
2)i

2 / (vthiky

&̄k
)2( x − x0

Ls
)2

, !C10a"

A = -
c

vA
( &̄k

vAky
)(1 − A

%vE&!x
vA

)Ls

x
B . !C10b"

Thus, this solution has a radial eigenmode of the form
exp#−!i /2"!vthi.ky. / &̄k"!Ls /)i"!x−x0"2 /Ls

2$, where we have
imposed outgoing wave boundary conditions such that the
negative root is selected.31 Similar to the electrostatic case,
both E"B and toroidal flow shear introduce a shift of the
eigenmode away from its rational surface.
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